A proof-theoretic semantic analysis of dynamic epistemic logic

نویسندگان

  • Sabine Frittella
  • Giuseppe Greco
  • Alexander Kurz
  • Alessandra Palmigiano
  • Vlasta Sikimic
چکیده

The present paper provides an analysis of the existing proof systems for dynamic epistemic logic from the viewpoint of proof-theoretic semantics. Dynamic epistemic logic is one of the best known members of a family of logical systems which have been successfully applied to diverse scientific disciplines, but the proof theoretic treatment of which presents many difficulties. After an illustration of the proof-theoretic semantic principles most relevant to the treatment of logical connectives, we turn to illustrating the main features of display calculi, a proof-theoretic paradigm which has been successfully employed to give a proof-theoretic semantic account of modal and substructural logics. Then, we review some of the most significant proposals of proof systems for dynamic epistemic logics, and we critically reflect on them in the light of the previously introduced proof-theoretic semantic principles. The contributions of the present paper include a generalisation of Belnap’s cut elimination metatheorem for display calculi, and a revised version of the display-style calculus D.EAK [30]. We verify that the revised version satisfies the previously mentioned proof-theoretic semantic principles, and show that it enjoys cut elimination as a consequence of the generalised metatheorem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TR-2010002: Reasoning About Games

A mixture of propositional dynamic logic and epistemic logic is used to give a formalization of Artemov’s knowledge based reasoning approach to game theory, (KBR), [4, 5, 6, 7]. We call the (family of) logics used here PDL + E. It is in the general family of Dynamic Epistemic Logics [21], was applied to games already in [20], and investigated further in [18, 19]. Epistemic states of players, us...

متن کامل

Melvin Fitting Reasoning About Games

A mixture of propositional dynamic logic and epistemic logic that we call PDL + E is used to give a formalization of Artemov’s knowledge based reasoning approach to game theory, (KBR), [4, 5, 6, 7]. Epistemic states of players are represented explicitly and reasoned about formally. We give a detailed analysis of the Centipede game using both proof theoretic and semantic machinery. This helps ma...

متن کامل

Reasoning About Games

A mixture of propositional dynamic logic and epistemic logic is used to give a formalization of Artemov’s knowledge based reasoning approach to game theory, (KBR), [4, 5, 6, 7]. We call the (family of) logics used here PDL + E. It is in the general family of Dynamic Epistemic Logics [21], was applied to games already in [20], and investigated further in [18, 19]. Epistemic states of players, us...

متن کامل

Proof Theory of Epistemic Logic of Programs

A combination of epistemic logic and dynamic logic of programs is presented. Although rich enough to formalize some simple game-theoretic scenarios, its axiomatization is problematic as it leads to the paradoxical conclusion that agents are omniscient. A cut-free labelled Gentzen-style proof system is then introduced where knowledge and action, as well as their combinations, are formulated as r...

متن کامل

Multi-type display calculus for dynamic epistemic logic

In the present paper, we introduce a multi-type display calculus for dynamic epistemic logic, which we refer to as Dynamic Calculus. The displayapproach is suitable to modularly chart the space of dynamic epistemic logics on weaker-than-classical propositional base. The presence of types endows the language of the Dynamic Calculus with additional expressivity, allows for a smooth proof-theoreti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Log. Comput.

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2016